
Density-based Hardware-oriented Classification for

Spike Sorting Microsystems

Li-Fang Cheng1, Tung-Chien Chen2, Nai-Fu Chang2, and Liang-Gee Chen1,2

1Department of Electrical Engineering and 2Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan

Abstract— Successful proof-of-concept laboratory experiments
on cortically-controlled brain computer interface motivate con-
tinued development for neural prosthetic microsystems (NPMs).
One of the research directions is to realize realtime spike
sorting processors (SSPs) on the NPM. The SSP detects the
spikes, extracts the features, and then performs the classification
algorithm in realtime in order to differentiate the spikes for
the different firing neurons. Several architectures have been
designed for the spike detection and feature extraction. However,
the classification hardware is missing. To complete the SSP, a
density-based hardware-oriented classification algorithm is pro-
posed for hardware implementation. The traditional classification
algorithms require a considerable memory space to store all
the training features during the processing iteration, which
results in a considerable power and area for the hardware. The
proposed one is designed based on the density map of the spike
features. The density map can be accumulated on-line with the
coming of the spike features. Therefore the algorithm can save
significant memory space, and is good for efficient hardware
implementation.

I. INTRODUCTION

Spike sorting is an important tool for analyzing neural

signals in the realm of neuroscience. It aims to sort the

detected neural events, or spikes, to the corresponding sources

of the firing neurons. With the aid of accurate sorting results,

the performance of the cortically-controlled brain-machine

interface for paralyzed patients may be improved [1]. One

of the current research targets is to design a real-time spike

sorting processor on the neural recording microsystems for

the long-term experiments [2]. The power consumption and

the size of the device are two of the major concerns for the

hardware optimization.

The on-chip spike sorting system generally consists of four

stages: the spike detection, the filtering and alignment, the

feature extraction and the classification. Each stage of the

system can be divided into the on-line processing engine

and the algorithm training engine. The algorithm training

engine collects a considerable amount of neural signals and

then extract the algorithm parameters used for the on-line

processing engine. For example, an amplitude threshold should

be trained in order to accurately detect the spikes in the on-

line spike detection engine. Many on-line processing hardware

units for spike sorting have been proposed [3], [4]. The

principal component analysis, one of the training algorithms

for the spike feature extraction, has also been designed in VLSI

hardware [5]. However, the hardware design for the training

part of classification has not yet been provided in the previous

works.

Spike

Detection

Threshold

Estimation

Filtering and

Peak Alignment

Principal Component

Analysis (PCA)

PCA Feature

Extraction
Table-look-up

Classification

Cluster Contour

Generation

On-line Processing

Periodic Parameter Training

Feature-to-cluster

Mapping Table

Aligned

Spikes
Trained

PCs

Trained

Threshold

Spike

Signals

Spike Sorting

Result

Extracted

Features

Fig. 1. The hardware structure of spike sorting.

In this paper, we propose a hardware-oriented training

algorithm for the classification part of spike sorting. Starting

from two of the most often discussed clustering algorithms,

the k-means and mean shift algorithms, we try to construct a

procedure to improve the accuracy and reduce the amount of

computation and memory requirements for the future hardware

implementation. The remainder of this paper is organized as

follows. Some preliminary knowledge is described in Sec-

tion II. The k-means and mean shift algorithms are introduced

and discussed in Section III. The proposed algorithm for

classification is represented in Section IV. Section V shows

the simulation results, and Section VI gives the conclusion.

II. PRELIMINARY

A. Spike Sorting

Neurons in the brain communicate through the firing of

action potentials, or spikes. These spikes can be recorded

extracellularly by the implantation of the micro-electrodes into

the brain. Most research in neuroscience relies on the analysis

of these measured signals. However, the measured signals are

often composed of spikes from a group of close-by neurons,

and how to identify the signals from different neurons becomes

an important issue. Spike sorting is the process that provides

a sequence of procedures to classify the spikes into clusters

corresponding to different neurons.

The first step of spike sorting is the spike detection. For most

neurons, the most prominent way to identify a spike is to detect

its amplitude [6]. Therefore, an amplitude threshold related to

the local instantaneous energy is often used for the detection.

The next step is to interpolate and align the spike waveforms

to facilitate the extraction of the spike features. The principal

component analysis (PCA) is one of the widely used tools

to extract the spike features and project them onto a finite-

dimension feature space. Finally, the spikes on the feature

space are classified into clusters corresponding to different

neurons after the classification algorithms.

978-1-4244-4141-9/11/$25.00 ©2011 IEEE 170

Proceedings of the 5th International
IEEE EMBS Conference on Neural Engineering
Cancun, Mexico, April 27 - May 1, 2011

ThD1.23

B. Training For Classification and Design Requirements

Figure 1 shows a general architecture of hardware operation

for spike sorting. The raw neural signals after the amplification

and digitization are passed to the spike sorting processor.

The processor is consisted of four major stages: the spike

detection, the filtering and alignment, the feature extraction,

and the classification. Each stage can be further divided into

two parts—the on-line processing and the training parts as

shown in Fig. 1. The on-line processing engines deal with the

sequential input signals in a real time with the programmed

algorithm parameters such as the amplitude threshold for the

spike detection. The training engines collect a large amount of

the neural data and extract the algorithm parameters through

the algorithm training. In this paper, we will focus on the

training part of the classification stage for the spike sorting

processor.

As Fig. 1 shows, the training engine for classification takes

the results of feature extraction as the input, and outputs

a mapping information such as a feature-to-cluster table.

Afterwards the mapping information is returned to the on-line

processing engine to classify the following detected spikes in

realtime. After the training, the new incoming spikes can thus

be classified by simply looking up the feature-to-cluster table.

We will discuss the training algorithms of clustering in more

detail in the next section.

Power and area are two major concerns for the implementa-

tion of the spike sorting processor. The power consumption is

often proportional to the operation frequency, and the area is

related to the processing memory units. Therefore, the power

consumption as well as the chip area of a device can be

roughly estimated by the amount of computation and memory

requirement on the software-design level. For example, the

memory size should be considered for the training data that

may need to be stored during the whole training procedure.

III. K-MEANS AND MEAN SHIFT ALGORITHMS

The k-means and mean shift algorithms have been used

for the classification in the off-line spike sorting [6], [7]. In

this section, we will briefly introduce the two algorithms and

discuss the hardware implementation issues based on these

two algorithms.

A. K-means Clustering

K-means algorithm divides a feature space into k clusters

by minimizing the sum of distances between the feature points

and the corresponding cluster center. Given an algorithm

parameter of k, the algorithm first sets k initial centers. Then

each feature point is assigned to one center with the minimum

distance. After the assignment, the new centers are set to the

mean values of feature points within the clusters. The feature

points are then re-clustered according to the new centers. The

iteration is performed until the convergence conditions are met.

B. Mean shift Clustering

Mean shift clustering adopts the concept of local kernel

density estimation to cluster the feature space. Given a window

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

15

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

15

−25 −20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

(a) (b) (c)

Fig. 2. Comparisons of k-means clustering.

of size h and its center x, the vector that points toward the local

maximum is calculated by

mh,G(x) =
∑

n
i=1 xig(

∥

∥

x−xi

h

∥

∥

2
)

∑
n
i=1 g(

∥

∥

x−xi
h

∥

∥

2
)
− x

, which is the so called mean shift vector [8]. The g(x) is

the profile function for a radially symmetric kernel G(x) and

works as the density estimator [8]. It computes the kernel

weights for data points according to their distance to the center.

Through calculating the mean shift vector iteratively, the

window keeps evolving toward the local maximum. When the

local maximum is found, the data points visited by the window

during this iteration are grouped into the same cluster [8]. The

procedure usually starts from many points of the feature space

until most of the feature points are clustered.

C. Discussion

The k-means algorithm has relatively small amount of

computations than the mean shift algorithm. However, the

performance of k-means algorithm is not robust. One of the

factors that may influence the performance is the initial setting

of the clusters. Figure 2 (a) and (b) show two different

clustering results of the same neural sequence with the k-

means algorithm. The result may be trapped into a wrong

local maximum without a proper setting of the initial clusters.

More, the k-means algorithm may also fail when the clusters

are not in the elliptic shapes. Figure 2 (c) shows an example.

In contrast, the mean shift clustering often delineates more

accurate boundaries because of the adaption of the density

estimation, which conceptually coincides with the intuitive

way how human distinguishes different clusters on the feature

space. Therefore, the density estimation may be a good starting

point to design a hardware-oriented classification algorithm in

order to have a robust result.

As for the hardware mapping, the memory requirement

and the computation complexity are usually estimated on

the algorithm level in order to achieve a small and low

power design. The k-means and mean shift algorithms keep

using the features of the training spikes during the iteration

process, and a considerable storage space is required to store

all these training data. The large memory generally leads to

large area and power consumption. In addition, the mean shift

algorithm estimates the local spike density on the feature space

and computes point-to-point distance of mean shift vector

during the iteration, which results in a significant computation

compared with the k-means algorithm. To have a hardware-

friendly algorithm, the requirement of the large memory to

store all the training data should be released. The computation

during the iteration should be simplified as well. Note that

the classification accuracy should be maintained after the

consideration of all the above hardware issues.

171

0

50

100

150

200

(a) (b) (c) (d)

Labeling and

Initial Clustering

Density Map

Construction
Cluster Merging

Table-look-up

Classification

Extracted

Features
Sorting

Results

Fig. 3. The block diagram of the proposed procedure.

IV. PROPOSED HARDWARE-ORIENTED ALGORITHM

A. Algorithm Procedure

Figure 3 shows the overall procedure of the proposed

density-based hardware-oriented classification algorithm. In

order to achieve a good classification performance like the

mean shift algorithm, the concept of density estimation is

adopted in the proposed algorithm. The first step of the algo-

rithm is to create the density information of the detected spikes

based on the extracted features. In the density estimation, each

feature dimension is firstly quantized into N different levels,

and the d-dimension feature space can thus be divided into

Nd units, or cells. The Nd cells are used to store the density

information of the detected spikes on the feature space. Similar

to the mean shift algorithm, a discrete kernel function is used

to formulate the density distribution, and the spike density is

estimated by accumulating this kernel on the cells. If a spike is

detected, the kernel is added to the specific cells corresponding

to the regions of feature space of the detected spikes. After all

the training spikes are processed, a density map like Fig. 3 (a)

is constructed. Note that the approximated discrete Gaussian

kernel is finally used in this paper.

The second step is the labeling and initial clustering of the

cells. In this step a label is given to the cells on and around

a local maximum of the density. As the result, the entire

density map are divided into several clusters corresponding

to the local peaks of the density. The detailed operations are

described as follows. In one iteration, we starting from an

arbitrary unvisited cell and label it with a cluster number.

Afterwards we check the neighbor cell according to the shift

vector of the current cell. If the next cell is also unvisited, it is

labeled to the same cluster number. Otherwise if the next cell

is previously labeled with another cluster number, this label is

used to replace the label of the previously visited cells in this

iteration. The iteration is terminated when the two labels are

merged or the local maxima is found. Note that the shift vector

of one cell indicates the direction to the adjacent cell with the

highest density value. That means the label of the cluster is

assigned along the highest density gradient as the mean shift

algorithm. Through the iteration process, the feature space is

initially clustered after all the cells are visited. Figure 3 (b)

shows the result of the initial clustering.

After all the cells in the feature space are labeled after the

initial clustering, the final clusters are constructed by merging

the initial clusters according to the boundary conditions of the

pairs of the clusters. In this step, a score is given to each

boundary to represent the probability that the two clusters

(a) (b) (c)

(d) (e) (f)

Fig. 4. The comparison of the different classification algorithms for spike
sorting. (a) and (d) are for the k-means algorithm. (b) and (e) are for the mean
shift algorithm. (c) and (f) are for the proposed hardware-oriented density-
based algorithm.

beside the boundary are actually from the same firing neuron.

Some conditions are used for the evaluation. For example, we

may check the density of the cells along the boundary of the

two clusters. If the value of the density along the boundary is

close to the peak value of two clusters, the two clusters may

be merged into one cluster. If the size of one cluster is much

smaller, it has a higher probability to merge with other large

clusters. Figure 3 (c) shows the cell-to-cluster table which is

the final result of the training procedure for classification.

Finally, Fig. 3 (d) represents the re-mapping result by the

usage of the table during the on-line processing. After the

training, the cell-to-cluster table is sent to the on-line engine

for the spike classification. In the on-line engine, the neural

signals are processed in a real time, and one spike is classified

immediately by the table-look-up according to the extracted

features.

B. Discussion about the Memory and Computation Issues

The memory requirement and computation complexity are

two primary issues to design a hardware-oriented algorithm.

The k-means and mean shift algorithms require to store the

features of all the spikes during the entire algorithm training.

Significant memory space may thus be required. The proposed

algorithm is designed based on the density map of the spikes.

After the Gaussian kernel is accumulated on the density map

in the first step of Fig. 3, the input features of the spikes can

be discarded immediately. The procedure can be operated on-

the-fly along with the coming of the spikes. Therefore, only

the memory space for the density map is required and should

be much smaller than the memory space for the raw data of

the spike features.

172

TABLE I

OBJECTIVE COMPARISON OF CLASSIFICATION ACCURACY

K-means Mean shift Proposed

Case 1 98.33% 98.71% 97.64%
Case 2 75.32% 96.18% 96.97%

TABLE II

COMPARISONS OF MEMORY AND COMPUTATION

memory (bits) addition multiplication

K-means 83,250 69,560 52,170
Mean shift 83,250 3,466,244 1,728,665
Proposed 20,480 178,660 6,697

The mean shift algorithm usually has a better performance

but consumes larger computation compared with the k-means

algorithm. That is because the mean shift algorithm needs to

estimate the local spike density based on the kernel function

many times during the iteration. The proposed algorithm

estimate the density function globally for only one time in

the beginning. During the iteration, the operations is to calcu-

late the shift vectors, and performs simply the comparisons

between the densities of adjacent cells. A related smaller

computation can be expected. .

C. Accuracy and Memory Tradeoff

The proposed algorithm is based on the density map, and

a memory space is required for the cell units. There is a

trade-off between the classification accuracy and the chip size

regarding this memory. The memory space is related to the

number of N. When N becomes smaller, the amount of the

memory space is reduced. However, the density map also has

a poorer resolution, which may result in the degradation of

the classification accuracy. For the hardware optimization, the

simulation is required to decide the resolution of the density

map and the corresponding memory space.

V. SIMULATION RESULTS

Figure 4 shows the visual comparison between the k-means,

mean shift, and the proposed algorithms. For the first neural

sequence in Fig. 4 (a)–(c), all the three algorithms work

successfully. In the second case in Fig. 4 (d)–(f), the k-

means algorithm fails to give a reasonable result as shown

in Fig. 4 (d). The proposed algorithm works as well as the

mean shift algorithm but has smaller computation and memory

requirement as shown in Fig. 4 (e) and (f). Table I summarizes

the corresponding objective comparison of the classification

accuracy with the golden results. The case 1 is referred to the

test case shown in Fig. 4 (a)–(c) while the case 2 is for Fig. 4

(d)–(f).

For the hardware optimization, the memory requirement

and the computation complexity are needed to be considered

during the algorithm development. Table II summarizes the es-

timation of the required memory and computation for the three

algorithms. The number of the spikes used in the algorithm

training is about 3300, and the density map with 32×32 cells

is used in this comparison. We can observe that the storage

space is significantly reduced for the proposed algorithm. The

amount of the computation is much smaller in comparison

0

20

40

60

80

0

20

40

60

80

0

50

100

150

200

0

10

20

30

40

0

10

20

30

40

0

50

100

150

200

250

300

0

5

10

15

20

0

5

10

15

20

0

50

100

150

200

250

300

350

(a) (c) (e)

−25 −20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

−25 −20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

−25 −20 −15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

(b) (d) (f)

Fig. 5. Simulation results with different resolutions of the density map.

with the mean shift algorithm. An efficient implementation of

VLSI hardware can be achieved with the smaller power and

area consumption with the proposed algorithm.

There is a trade-off between the accuracy and the chip

area regarding the memory size of the density map as we

discussed in Section IV-C. Figure 5 represents the performance

comparisons of the proposed algorithm with the different

resolutions of the density map. Figure 5 (a) and (b) are tested

with the resolution of 64×64, and the feature space is divided

into 4096 cells for the density construction. Figure 5 (c) and

(d) are tested with the resolution of 32×32 and Fig. 5 (e) and

(f) are with 16× 16. As Fig. 5 (a)–(d) shows, either 64× 64

or 32× 32 works successfully, but the 16× 16 division fails

to give a proper boundary as shown in Fig. 5 (f).

VI. CONCLUSION

In this paper, a density-based hardware-oriented algorithm is

proposed for spike sorting microsystems. By the quantization

of the feature space and the construction of the density map,

the memory space and computation complexity for the training

iteration are greatly reduced in comparison with the k-means

and mean shift algorithms. The classification accuracy is as

robust as the mean shift algorithm according to the simulation.

The algorithm is thus feasible for the efficient hardware

implementation in the future.

REFERENCES

[1] M.D. Linderman and et al., “Signal processing challenges for neural
prostheses,” IEEE Signal Proc. Magazine, vol. 25, no. 1, pp. 18–28,
2008.

[2] Z. Zumsteg and et al., “Power feasibility of implantable digital spike
sorting circuits for neural prosthetic systems,” IEEE Tran. on Neural

Syst. and Rehab. Eng., vol. 13, no. 3, pp. 272–279, 2005.
[3] M. Chae and et al., “A 128-channel 6mw wireless neural recording ic

with on-the-fly spike sorting and uwb transmitter,” in ISSCC Dig. Tech.

Papers, Feb 2008, pp. 146–603.
[4] V. Karkare and et al., “A 130-gw, 64-channel spike-sorting dsp chip,” in

ASSCC Dig. Tech. Papers, 2009, pp. 289–292.
[5] T. C. Chen and et al., “A biomedical multiprocessor soc for closed-loop

neuroprosthetic applications,” in ISSCC Dig. Tech. Papers, Feb. 2009,
vol. 25, pp. 434–435.

[6] M. S. Lewicki, “A review of methods for spike sorting: the detection
and classification of neural action potentials,” Network: Comput. Neural

Syst., pp. R53–R78, 1998.
[7] Q. Zhao and et al., “Evolving mean shift with adaptive bandwidth: A fast

and noise robust approach,” in Asian Conf. on Computer Vision, Sept.
2009, vol. 5994, pp. 258–268.

[8] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature
space analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 24, no. 5, pp. 603–619, May 2002.

173

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

